N_

Medallion: A competition platform to reduce LVR

mxwtnb! and cryptoma20? and easyrider?

mxwtnb@charm.fi', tom@charm.fi?, dz@charm.fi

September 7, 2024

Abstract: Medallion is a DEX where IVR reduction strategies compete to earn the highest
yields for liquidity providers (LPs). It generalizes auction-managed AMMs, so that the widest
range of LVR reduction strategies can compete on an open and permisionless platform. The
winning strategy calculates a different fee for each swap in a liquidity pool, pays the highest
rent to LPs, and earns all the swap fees in the pool. This paper explains how Medallion
increases LP yields, and describes some of the LVR reduction strategies that can compete on

the platform.

1 Introduction

Loss-versus-rebalancing (ILVR) is a significant source
of losses for LPs, far exceeding the losses from im-
permanent loss, sandwich attacks, and front-running
attacks [5]. Many strategies are being researched to
reduce LVR, such as dynamic fees, auctions, and us-
ing an oracle; but given the size and complexity of
LVR, it’s unlikely one strategy will always be the best.
A mechanism is required to automatically select the
best strategy from all the possible strategies, in order
to recover the largest amount of LP losses.

The am-AMM [1] is one such mechanism. It sup-
ports some strategies but lacks support for many oth-
ers. Medallion lets users create their own strategy con-
tracts to customise the am-AMM, in order to support
more strategies, and increase the design space for new
strategies to emerge. This results in more competi-
tion, and higher yields for LPs.

2 Prior work

IVR are losses incurred by AMM LPs due to stale prices
that are picked off by better informed arbitragers
[8]. Most of the arbitragers’ profits are extracted by
block builders [10], and LVR reduction strategies re-
distribute profits from block builders to LPs. Dynamic
fees and application layer auctions are the most com-
mon categories of IVR reduction strategies.

Dynamic fees detect signals for toxic order flows,
and charge higher fees for swaps that are more likely
to be toxic. Dynamic fees can use auto-correlation

signals [9] to charge higher fees if a swap is in the
same direction as the previous swap; volatility signals
to charge higher fees when the volatility is high [2];
router signals to charge lower fees for swaps originat-
ing from an address that routes retail trades [3]; and
machine learning signals to charge different fees de-
pending on the patterns detected from machine learn-
ing algorithms.

In application layer auctions, users bid for the op-
portunity to execute swaps, set fees, and capture MEV
(Maximal Extractable Value). The applications pay
the bids to LPs as extra yields. Examples of applica-
tion layer auctions include McAMM [7], where bidders
bid for the right to execute the first swap in a block;
FM-AMM [4], where bidders bid for the right to exe-
cute all the swaps in a batch at the same price; Sorella
[12], where bidders bid to execute the fist swap and a
batch of swaps; and the am-AMM [1], where bidders
bid to set the same fee for all the swaps within a block.

Less common approaches include oracle aware
AMM [8] and Hybrid AMMs [6].

Medallion combines the best features of application
layer auctions and dynamic fees.

3 Medallion

Medallion is a DEX where IVR-reduction strategies
compete to earn the highest yield for LPs. It has a pub-
lic auction where competing strategists submit bids -
the highest bidder pay their bid to LPs, attach their
strategy to a pool, and earn all the pool’s swap fees.



Medallion’s approach is similar to the am-AMM,
with one significant difference. In Medallion, anyone
can write a strategy contract to reduce IVR, and bid to
attach the contract to a pool. The contract implements
a calculateSwapFee() function to calculate the fee
for each swap. The fee can be different, depending on
the size, direction and sender of the incoming swap;
and can change automatically without requiring a sep-
arate transaction.

Strategy contracts customise the am-AMM, similar
to hooks customising a Uniswap pool.

4 Strategy Contract

Dynamic Fees

N\

Swaps Auction

—_—

Automatically
am-AMM ——  cadlculate a differentfee  ——  Oracles
for each swap

Volatility . Signalling

Figure 1: The strategy contract

Strategy Contracts are user deployed contracts that ex-
ecute pre-defined logic to calculate a different fee for
each swap in a liquidity pool. Here are some examples
of the IVR reduction strategies that can be built using
Strategy Contracts:

* Dynamic fee strategies:

A manager noticed a swap in the same direction as
the previous swap is more likely to have higher LVR.
They write a Strategy Contract to set a swap fee of
1%, and 3% if the next swap is in the same direc-
tion.

* Auction strategies:

A manager believes the first swap in a block is more
likely to be an arbitrage trade, and build an auction
where arbitragers bid for this swap. The winning
bidder’s address will be whitelisted by a Strategy
Contract to execute this swap, and all transactions
submitted before this swap will revert.

* Signalling strategies:

A manager is looking for IVR signals, and found
0x1234 is an arbitrage bot generating toxic flow,

and 0x5678 is a router routing retail trades. They
write a Strategy Contract to charge a 5% swap fee
for 0x1234, a 0.3% fee for 0x5678, and a 1% fee
for everyone else.

e Oracle strategies:

A manager writes a Strategy Contract to charge 3%
fee for swaps that move the AMM price towards a
Binance spot price, and 1% fee for other swaps.

* Volatility strategies:

A manager believes the market will be volatile over
the next two days, and estimates swappers are will-
ing to pay 50% more fees during this period. They
write a Strategy Contract to set the fee to 3% for the
next two days, and 2% afterwards.

* Arbitrage strategies:

A manager writes a Strategy Contract to charge 3%
fee if the DEX price is between 10 and 20. If the
price moves to 10, the manager can do zero-fee
swaps to capture all the arbitrage profits when the
CEX price moves between 10 and 10.3.

* MEV tax strategies:

For chains that support competitive priority order-
ing [11], a manager can create a Strategy Contract
to read the chain’s priority fee. This allows a high
MEYV tax to be charged for the first swap in a block
to reduce LVR, and a low MEV tax for subsequent
swaps to incentivise uninformed flows.

* Replicating other AMMs:

The manager can replicate an AMM with a static
fee (eg the am-AMM) by writing a Strategy Contract
that sets the same fee for all swaps within a block.

* Replicating liquidity distributions:
Assume ETH price is 2000, and a manager writes a
strategy contract to replicate an order book distribu-
tion of 1 ETH bid at 1980 and 1 ETH bid at 1960.
The first 1 ETH will sell at a 1% swap fee; the next
1 to 2 ETH at 2%; and swaps selling any remaining
ETH will be rejected.

* Combination strategies:

A manager building a dynamic fees strategy can
supplement their earnings by auctioning off the
rights to execute a swap.

In the future, it is likely Medallion users will create a
wide range of independently researched strategy con-
tracts.



5 Public Auction

Public Auction

Pays bid Pays bid

Active
Swapper —_— Pool LPs

Manager
Pays swap fees

Figure 2: The public auction

Anyone can deploy their own strategy contract, and
use Medallion’s public auction to bid for the right to
attach their contract to a pool. The highest bidder
becomes the active manager and pays rent (i.e. the
amount bid) to active LPs at each block, and anyone
can place a higher bid at any time to become the new
active manager. The active manager’s contract auto-
matically sets a different fee for each swap, and the
active manager earns all the swap fees generated by
the pool. LPs receive the active manager’s rent as ex-
tra yields.

Here is an example of how the auctions works:

1. Manager A created a strategy contract that gener-
ates expected fees of $150 a day, and placed a bid
of $100 per day to become the active manager.
$100 was paid to LPs as rent, and the manager
earns a profit of 150 - 100 = $50 a day.

2. Manager B built a similar contract and is willing
to make less profit. They bid $110 a day to be-
come the new active manager. $110 was paid to
LPs, and the manager earns $40 profit.

3. Manager C creates a better contract that gener-
ates expected fees of $300 a day. They bid $200 a
day to become the new active manager. $200 was
paid to LPs, and the manager earns $100 profit.

6 Implementation

All the functionalities will be implemented in a single
contract, the Medallion hook. It’s a singleton contract
that can be attached to Uniswap V4 pools as a hook.
It contains the public auction, manages the bids, and
the payments to managers and LPs. Fig 3 shows how
the Medallion hook interacts with other users within
the Medallion ecosystem. In the ecosystem:

* Pool creators set up a Medallion pool by creating a
Uniswap v4 pool attached to the Medallion hook.

* For each swap, beforeSwap () is called to obtain the
swap fee in getFee (). The swap fee will be routed
by the hook to the highest bidding manager.

* Managers call modifyBid() to place or modify a
bid, and the hook will pay the bid to the pool’s LPs
as rent. Managers pay bids and withdraw funds by
calling deposit () and withdraw().

e Providing liquidity to a Medallion pool works the
same way as providing liquidity to any other
Uniswap V4 pool.

* Swaps are atomic, and work the same way as any
other Uniswap V4 pool.

The following sections provides further details of the
ecosystem.

6.1 Pool creation

Medallion pools are standard Uniswap V4 pools at-
tached to the Medallion hook. Anyone can create a
Medallion pool by calling initialize() in Uniswap
V4’s PoolManager contract, with hookAddress point-
ing to the Medallion hook so that the pool can access
Medallion’s functionalities.

Medallion pools can be created for any pair to tokens
and tick spacing, and can be done programmatically
or using a front-end.

6.2 Swapping

Swaps are atomic, and work the same way as any
other Uniswap V4 pool. Frontends, aggregators, and
fillers don’t have to implement extra logic to swap.

The Medallion hook implements beforeSwap() to
fetch the swap fee from the active manager’s strategy
contract, and redirect the swap fees to managers in-
stead of LPs.

6.3 Liquidity Provision

Adding or managing liquidity works the same way as
any other Uniswap V4 pool - it can be done using pe-
riphery contracts or via a liquidity manager. A fron-
tend can be created to help users find a Medallion pool
and provide liquidity.

6.4 Manager and Strategy Contracts

Managers are users who build strategy contracts to set
the fees of a swap, in order to recover LP losses and



deploy contract

‘ LP ‘ ‘ Manager ‘

t

modifyBid()
Provide Liquidity deposit()
withdraw()
Y
Medallion Hook Strategy Contract
getFee()
beforeswap()
. Swap
> Uniswap Pool Swapper Pool Creator

Create Pool

Figure 3: The Medallion ecosystem

reduce IVR. When a user bids to become a manager,
they specify the address of a strategy contract.

If the user places the highest bid, they become the
active manager, and their strategy contracts will be
called on every swap to determine the swap fee. The
active manager pays the bid to LPs as rent, and earns
all the swap fees. They can call withdraw(amountO,
amount1) to withdraw the fees earned.

strategy ~ contracts ~ must implement the
calculateSwapFee(Z, A, S)! method, because
it is called by the Medallion hook before each swap
to calculate the fee to be charged for the swap. The
implementations contain their own logic to determine
the fee or to revert swaps.

If a strategy contracts doesn’t implement the fee
properly or sets fees that are too high or too low,
LPs will not be affected. It will simply prevent swaps
from taking place, and the manager will misses out
on revenue. If the manager is blocking swaps within
the pool, users can call a forceSwap() method in the
Medallion hook to force a swap with a fixed fee.

6.5 Public Auction and rent payment

Medallion’s public auction is implemented as a sin-
gleton contract that can be attached to Uniswap V4
pools as a hook. Anyone can submit the highest bid at
any time to become the new active manager of a pool.
They pay the highest rent per block to LPs.

To bid, users call MedallionHook.modifyBid (P,
S, F, R)%;and existing bidders can modify their bids

17 = zeroForOne, A = amountSpecified, S = senderAddress
2p = pool, S = strategyAddress, F = feeRecipient, R = rent

using modifyBid(rent, strategyAddress). Bidding
is permissionless - anyone can submit a bid at any
time.

rent is the amount a bidder is willing to pay LPs
at each block to become the active manager, and a
bid can be canceled at any time by setting the rent to
0. strategyAddress points to a strategy contract that
implements the fee calculation logic - it is usually the
contract built by the bidder.

6.5.1 Rent payment

The manager uses deposit(amountO, amountl) to
deposit tokens to the Medallion Hook to pay rent, and
the deposit will be gradually decreased as rent is paid
to LPs. If a manager’s deposit does not cover the rent,
their bid will be ignored, and the next highest-bidding
manager who has sufficient deposits will become ac-
tive. They can call withdraw(amountO, amountl) at
any time to withdraw their rent.

Rent is paid each block to in-range LPs. The actual
transfer of funds is triggered during a relevant trans-
action, such as before a swap; when the amount of ac-
tive liquidity changes; or when the manager changes.
The total amount of rent owed since the last payment
is calculated, and then transferred from the manager’s
deposits to in-range LPs using the donate () method.
The amount of rent LPs receive is proportional to the
size of their in-range liquidity, and the funds will be
transferred using ERC6909 to minimise gas costs.



7 Conclusion

Medallion increases LP yields by optimising the swap
fees generated by a Uniswap V4 pool. Its architecture
is decentralised, which means anyone can build any
strategy to set the fee of a swap, and then bid in a
public auction to recover LP losses and reduce LVR.
LPs earn the highest yields from the biggest bids, and
strategy builders earn all the fees in a liquidity pool.

[1]

References
Austin Adams, Ciamac C. Moallemi, Sara
Reynolds, and Dan Robinson. 2024. am-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

AMM: An Auction-Managed Automated Market
Maker. Retrieved 2024-08-27 from https://
arxiv.org/abs/2403.03367

Ambient. 2023. Volatility strategy. Retrieved
2024-09-05 from https://docs.ambient.
finance/users/dynamic-fees

Balancer. 2023. Fee Discount for CowSwap
Solvers.  Retrieved 2024-09-05 from https:
//tinyurl.com/yc26e7va

Andrea Canidio and Robin Fritsch. 2024. Ar-
bitrageurs’ profits, LVR, and sandwich attacks:
batch trading as an AMM design response. Re-
trieved 2024-08-27 from https://arxiv.org/
pdf/2307.02074

cowswap. 2024. Cow-amm. Retrieved 2024-09-
03 from https://cow.fi/cow-amm

Arrakis Finance and Valantis Labs. 2024.
Hybrid Order Type: A new MEV aware AMM
design.  Retrieved 2024-08-27 from https:
//github.com/ArrakisFinance/research/
blob/main/HOTAMM-Whitepaper.pdf

josojo. 2022. MEV capturing AMM (McAMM).
Retrieved  2024-08-27  from  https://
ethresear.ch/t/mev-capturing-amm-mcamm/
13336

Jason Milionis, Ciamac C. Moallemi, Tim
Roughgarden, and Anthony Lee Zhang. 2024.
Automated Market Making and Loss-Versus-
Rebalancing. Retrieved 2024-09-05 from
https://arxiv.org/abs/2208.06046

Alex Nezlobin. 2023. Auto-correlation strat-
egy. Retrieved 2024-09-05 from https://x.
com/0x94305/status/1674857993740111872

[10]

[11]

[12]

Mallesh Pai and Max Resnick. 2023. Struc-
tural Advantages for Integrated Builders in MEV-
Boost.  Retrieved 2024-09-05 from https://
arxiv.org/abs/2311.09083

Dan Robinson and Dave White. 2024. Pri-
ority Is All You Need. Retrieved 2024-
08-27 from https://www.paradigm.xyz/2024/
06/priority-is-all-you-need

Sorella. 2024. Sorella labs ethereum mev prob-
lem.  Retrieved 2024-08-27 from https://
tinyurl.com/yc6a7y3r



